If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-48x-18=0
a = 24; b = -48; c = -18;
Δ = b2-4ac
Δ = -482-4·24·(-18)
Δ = 4032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4032}=\sqrt{576*7}=\sqrt{576}*\sqrt{7}=24\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-24\sqrt{7}}{2*24}=\frac{48-24\sqrt{7}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+24\sqrt{7}}{2*24}=\frac{48+24\sqrt{7}}{48} $
| d=-60 | | 6^x-1=1/7776 | | 0.5(8-x)+0.1x=0.64 | | 16x+2=15-x+10 | | 8x+10=9x+4 | | 7x-12+3x+28= | | 3x+2=-3x+7 | | n+5=−1−16 | | 3x-2+7x4=24 | | −7+x=21 | | 60+(x+60)+70=180 | | (6x+8)/2=24/2+4xx | | 11x+7=10x+15 | | 80+x+44+60=180 | | X^2+4x+12=2x+21 | | 72+34+x=180 | | 12a+7=8a-1 | | 5(6–4x)=x+21 | | xx—14x+18=–19 | | 0.05=7*x/7+12 | | 72+32+x=180 | | 4x+3/4=-11 | | 50+(4x+1)+85=180 | | 4-9c+3c=5 | | 8.88=4.4x-7 | | z−42=6 | | 2/5^h+10=6 | | 0.4(x-7)=18. | | 21+2t=12+5t | | z+19=34 | | -8¼=4b–¾ | | (x)/(15)-8=-2 |